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Abstract

Thermal flows at low Mach numbers are a basic problem in combustion, environmental pollution prediction and atmo-
spheric physics areas. Most of the existing schemes for solving this problem treat convection explicitly, which confines time
step width due to the CFL condition. In this paper, based on the pseudo residual-free bubble approach [F. Brezzi, L.P.
Franca, T.J.R. Hughes, A. Russo, b ¼

R
g, Methods Appl. Mech. Eng. 145 (1997) 329–339; T.J.R. Hughes, Multiscale phe-

nomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of sta-
bilised methods, Method. Appl. Mech. Eng. 127 (1995) 387–401], we introduce an implicit finite element scheme for the
thermal flow problem. We firstly give a low Mach number asymptotics of compressible Navier–Stokes equations for
the thermal flows and then derive the numerical scheme for them in detail. Three representative case studies are used to
investigate and to test the numerical performances of the proposed scheme.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many computational schemes for solving low Mach number flows are obtained by the preconditioning
techniques which extend the numerical methods for high Mach number flows into the low Mach number
flow computations, for instance, see works [21,22,26–28]. These schemes firstly reduce the Navier–Stokes
equations using Turkel preconditioning technique [26] and then are constructed based on Godunov-type
method. Some of them employ implicit upwind scheme, e.g. [22]. These schemes do not completely
decouple the acoustic modes from the vorticity and entropy modes. They may be the best option to
compute the low Mach number flow fields with some part of moderate or high Mach number flows.
For the entire flow field with low Mach number, however, these methods are still expensive in computa-
tion [14].
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.10.025

* Corresponding author. Tel.: +44 1772 893239.
E-mail address: wliu1@uclan.ac.uk (W. Liu).

mailto:wliu1@uclan.ac.uk


2744 W. Liu, G. Makhviladze / Journal of Computational Physics 227 (2008) 2743–2757
The acoustic mode separation approach that applies a low Mach number asymptotic ansatz may relax
the harsh term of the CFL condition due to the sound speed. Using the low Mach number asymptotic
ansatz we can obtain a set of simplified Navier–Stokes equations for the low Mach number flows
[17,20]. As usual the obtained simplified equations are integrated temporally by predictor–corrector or frac-
tional step schemes, such as SIMPLE and projection methods, and other methods [11,14,16–18,20,24]. In
some works these methods are called the segregated. A common feature for these schemes is that they
explicitly treat the convection term and implicitly calculate the pressure and diffusion term. Thus the
CFL condition with convection velocity is still an obstacle to restrict time step width. Therefore, in this
paper, we introduce an implicit finite element algorithm to solve the low Mach number thermal flows.
In addition the proposed scheme which is different from the traditional segregated methods solves a set
of completely coupled equations for the velocity, pressure and temperature components to improve the
numerical performance.

The content of this paper is as follows. Section 2 describes the governing equations. In Section 3 we give
derivation of the algorithm. Section 4 reports the numerical tests to the proposed algorithm. Finally the con-
clusions are summarised in Section 5.
2. Governing equations

Let X and ð0; T Þ be a spatial and temporal domain, and x 2 �X (the set closure of the spatial domain) and
t 2 ½0; T � are the associated coordinates. The Navier–Stokes equations for compressible flows may be written
in dimensionless form as
oq
ot
þ ðu � rÞqþ qr � u ¼ 0; on X� ð0; T Þ; ð1Þ

q
ou
ot
þ qðu � rÞuþrp � 1

Fr2
qg � 1

Re
r2uþ 1

3
rðr � uÞ

� �
¼ 0; on X� ð0; T Þ; ð2Þ

q
oT
ot
þ qðu � rÞT þ ðc� 1ÞM2 dp

dt
� 1

RePr
r2T �M2 c� 1

Re
U� q ¼ 0; on X� ð0; T Þ ð3Þ
and the state equation,
cM2p ¼ qT ; on X� ð0; T Þ; ð4Þ

where u; q; T ; p; c;U and g denote, respectively, the dimensionless velocity vector, density, temperature, pres-
sure, ratio of specific heats, dissipation function and gravity vector. The term q in (3) is the heat source which
can be produced by the reaction or radiation. In this work our major focus is on the numerical scheme for low
Mach number flows, hence the heat source is treated as the prescribed. It should be pointed out that such
treatment does not affect the scheme introduced in this work and could be applied to reaction flows.

The above equations are obtained by means of non-dimensionalising the compressible equations using

x ¼ ~x
xref
; t ¼ ~turef

xref
; u ¼ ~u

uref
; q ¼ ~q

qref
; T ¼ eT

T ref
and p ¼ ~p

qref u2
ref

. The dimensionless numbers appearing in (1)–(4) are
defined as
where l; k;R and cp are the dynamic viscosity, thermal conductivity, universal gas constant and specific heat
at constant pressure, respectively.
2.1. Low Mach number asymptotics

Now we describe the low Mach number approximate form of the Eqs. (1)–(4), using an asymptotic ansatz
based on the little parameter a ¼ cM2 � 1. The unknown variables are first expended into the following series:
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u ¼ u0 þ au1 þ � � � ; ð5Þ
q ¼ q0 þ aq1 þ � � � ; ð6Þ
T ¼ T 0 þ aT 1 þ � � � ; ð7Þ

p ¼ 1

a
p0 þ p1 þ � � � : ð8Þ
Substituting (5)–(8) into (1)–(4) and collecting the same order terms of a, we have
oq0

ot
þ ðu0 � rÞq0 þ q0r � u0 ¼ 0; on X� ð0; T Þ; ð9Þ

q0

ou0

ot
þ q0ðu0 � rÞu0 þrp1 �

1

Fr2
q0g � 1

Re
r2u0 þ

1

3
rðr � u0Þ

� �
¼ 0; on X� ð0; T Þ; ð10Þ

q0

oT 0

ot
þ q0ðu0 � rÞT 0 þ

c� 1

c
dp0

dt
� 1

RePr
r2T 0 � q ¼ 0; on X� ð0; T Þ; ð11Þ

rp0 ¼ 0; on X� ð0; T Þ; ð12Þ
p0 ¼ q0T 0; on X� ð0; T Þ: ð13Þ
Eqs. (9)–(13) are called low Mach number asymptotic equations, in which the pressure is split into spatially
uniform thermodynamic pressure and hydrodynamic pressure. The thermodynamic pressure is constant for an
open system. When the computational domain is enclosed, it is generally time-dependent. Considering that the
total mass in an enclosed system remains invariable, we have [14]
p0 ¼
R

q0 dVR
1

T 0
dV

: ð14Þ
Based on combination of the above equations we suggest some computational strategies. With the aid of
the numerical tests, however, we found that the use of the continuity Eq. (9) does not provide a favorable
property for the proposed numerical scheme. In order to seek a set of equations with better convergent behav-
ior we derive a volume equation of fluids to replace it. Combining Eqs. (9) and (11), and further using the
equation of state (13), we obtain an equation for the flow divergence
r � u0 �
1

p0RePr
r2T 0 ¼

c� 1

cp0

q� 1

cp0

dp0

dt
; on X� ð0; T Þ: ð15Þ
Eq. (15) shows the variation of the fluid particle volume due to the heat transfer or/and the change of the ther-
modynamic pressure. For the isothermal steady flows without heat sources, the fluid volume is invariable,
therefore, r � u0 ¼ 0.

Now we use the Eq. (15) to replace (9), and thus complete the basic mathematic equations for low Mach
number flows, (10)–(15). For the sake of simplification of symbols, we drop out the subscript 0 of the variables
in the above equations; p denotes the hydrodynamic pressure and p0 the thermodynamic pressure.

Comparing the above mathematic model with the model of the projection method, [19], in which the state
equation is discarded and the continuity equation and an equation which is similar to (15) are retained, we
may further study the difference between the proposed numerical method in this work and segregated
methods.

2.2. Initial and boundary conditions

The initial conditions are the velocity, density, pressure and temperature fields at t ¼ 0, which are defined by
u ¼ uðxÞ; q ¼ qðxÞ; p ¼ pðxÞ and T ¼ T ðxÞ; on �X: ð16Þ

The boundary conditions are divided into hydrodynamic boundary conditions and thermodynamic bound-

ary condition. The hydrodynamic boundary conditions are posed into
u ¼ f ; on C1 and � p þ n � r ¼ g; on C2; ð17Þ
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where C ¼ C1 [ C2 and r denote, respectively, the boundary surfaces and the shear stress tensor. The values of
f and g are prescribed and n the unit normal vector, while the thermodynamic boundary conditions are defined
as
T ¼ h; on C3 and
oT
on
¼ v; on C4; ð18Þ
where C ¼ C3 [ C4 and h and v are the prescribed function. Note that the computation procedure does not
require the boundary condition for density, because the density will be evaluated from the equation of state
(13) at each time step.

3. Numerical methods

We seek the finite element solution of the Eqs. (10)–(18). The equal-order trilinear interpolation on hexa-
hedral element and/or the linear interpolation on tetrahedral element are used for discretization of the veloc-
ity, pressure and temperature, respectively. As is well known, the standard Galerkin formulation for these
elements will lead to two kinds of instabilities. One is that the presence of convection terms of the momentum
and energy equations may result in spurious oscillations when the Reynolds number of flow is high and the
computational mesh is not fine enough. The second instability stems from the inappropriate combination
of interpolation functions for the velocity and pressure. This combination violates the Babuska–Brezzi condi-
tion for the saddle point problem [3]. As a consequence, it would lead to the so-called spurious pressure
modes.

3.1. Stabilised finite element formulation

Theoretically the both instabilities can be viewed as a result of the loss of some small-scale solution during
discretizing the equations [13]. If the discrete equations are conversely reformulated into continuous ones, we
would see that the reformulated continuous equations have some property which is different from the original
equations [15]. Therefore, the stabilized method is to re-capture the lost small-scale solutions during compu-
tation by extending the finite element space. Below we will derive a stabilized formulation by means of apply-
ing the pseudo residual-free bubble approach, [4,5,8–10,13].

We assume that the Eqs. (10), (11) and (15) are linearised and the density is viewed as a given quantity. In
practical computations, however, the density will be updated by the equation of state (13) at each iteration. In
addition, for the sake of simplifying symbols we use below an operator to express the above equations. Let L
denote the operator of (10), (11) and (15), i.e.
L ¼
q o

ot þ qu � r � 1
Re r

2 þ 1
3
r � r

� �
r 0

r� 0 � 1
p0RePrr

2

0 0 q o
ot þ qu � r � 1

RePrr
2

0BB@
1CCA: ð19Þ
Using this operator, the Eqs. (10), (11) and (15) may be rewritten as
LðSÞ � L

u

p

T

0B@
1CA ¼ F �

1
Fr2 qg

c�1
cp0

q� 1
cp0

dp0

dt

q

0B@
1CA: ð20Þ
The trial function spaces of the standard finite element method, Uh ¼ U h
u;U

h
p;U

h
T

� �
, are defined as
U h
u ¼ fuhjuh 2 ðH 1hÞ3; uh ¼ f ; on C1g; ð21Þ

U h
p ¼ fphjph 2 H 1hg; ð22Þ

U h
T ¼ fT hjT h 2 H 1h; T h ¼ h; on C3g ð23Þ
and the test function spaces, V h ¼ V h
u; V

h
p; V

h
T

� �
, as
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V v ¼ fvhjvh 2 ðH 1hÞ3; vh ¼ 0; on C1g; ð24Þ
V q ¼ fqhjqh 2 H 1hg; ð25Þ
V R ¼ fRhjRh 2 H 1h;Rh ¼ 0; on C3g; ð26Þ
where H 1h ¼ fuhjuh 2 C0ð�XÞ;uhjXe 2 P 1 8Xe 2 Dg and P 1 and D denote the first order polynomials and the
set of the finite element discretization of the domain X.

According to the pseudo residual-free bubble approach, the space Uh is enlarged as U ¼ Uh � U b, where
U b ¼ �eUB

e ; and UB
e is the space of bubble in the element, E. This means that the values of functions from

the function spaces are taken zero on the element boundary, that is,
UB
e ¼ ðH 3

0ðEÞ;H 1
0ðEÞ;H 1

0ðEÞÞ: ð27Þ

Thus, the variational formulation of the problem (10)–(18) can be written as;
Find S ¼ Sh þ Sb 2 UðSh 2 Uh; Sb 2 UbÞ such that for all vh 2 V h and vh

b 2 Ub,
ðLðShÞ; vhÞ þ ðLðSbÞ; vhÞ ¼ ðF ; vhÞ; ð28Þ
ðLðShÞ; vh

bÞ þ ðLðSbÞ; vk
bÞ ¼ ðF ; vh

bÞ: ð29Þ
Due to the bubble function property, the second term on left hand side of (28) has the relation
ðLðSbÞ; vhÞ ¼ ðSb; L	ðvhÞÞ; ð30Þ
where L	 is the formal adjoint of L on E. Furthermore, due to (27) and (29) we have
LðSbÞ ¼ �fLðShÞ � F g in E;

Sb ¼ 0 on oE:

(
ð31Þ
Let L�1 denote the negative inverse of the operator defined by (31), so that
Sb ¼ L�1ðLðShÞ � F Þ: ð32Þ

Substituting (32) and (30) into (28), we have
ðLðShÞ; vhÞ þ ðL�1ðLðShÞ � F Þ; L	ðvhÞÞ ¼ ðF ; vhÞ: ð33Þ
Due to the linear interpolation function on element, LðShÞ � F and L	ðvhÞ are constants in each element E.
Therefore the second term on left hand side of (33) can be written as
ðL�1ðLðShÞ � F Þ; L	ðvhÞÞjE ¼ ½ðLðShÞ � F ÞjE�½L	ðvhÞjE�½ðL�1ð1Þ; 1Þ�

¼ 1

jEj

Z
E

L�1ð1ÞdE
Z

E
ðLðShÞ � F ÞL	ðvhÞdE ¼ s

Z
E
ðLðShÞ � F ÞL	ðvhÞdE: ð34Þ
Summarising up the above derivation we obtain the stabilised variational formulation for (10)–(18):
Find Sh 2 U h such that for all vh 2 V h
ðLðShÞ; vhÞ þ sððLðShÞ � F Þ;L	ðvhÞÞ ¼ ðF ; vhÞ; ð35Þ
where s ¼ 1
jEj
R

E L�1ð1ÞdE ¼ 1
jEj
R

E bEdE and bE is a solution of the following problem in E:
LðbEÞ ¼ 1 in E

bE ¼ 0 on oE

�
ð36Þ
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Now we expand (35) and rewrite it as:
Find uh 2 Uh

u; T
h 2 Uh

T and ph 2 U h
p such that
Z

X
vh � q ouh

ot
þ uh � ruh

� 	
dX�

Z
X
rvh : ph dXþ

Z
X
rvh : rdXþ

Z
X

qhr � uh þ 1

p0RePr
rqh � rT h

� 	
dX

þ
Z

X
Rh � q oT h

ot
þ uh � rT h

� 	
þ 1

RePr

Z
X
rRh � rT h dXþ

Xnelement

e¼1

Z
Xe

d ðuh � rÞvh þ 1

q
rqh

�
� 1

Re
ðr2vhÞ þ 1

3
rðr � vhÞ


 ��
� q

ouh

ot
þ uh � ruh

� 	
þrph � 1

Re
ðr2uhÞ þ 1

3
rðr � uhÞ


 �� �
dX

þ
Xnelement

e¼1

Z
Xe

e r � vh � 1

p0RePr
ðr2RhÞ


 �
� r � uh � 1

p0RePr
ðr2T hÞ


 �
dX

þ
Xnelement

e¼1

Z
Xe

/ ðuh � rÞRh � 1

RePr
ðr2RhÞ


 �
� q

oT h

ot
þ uh � rT h

� 	
� 1

RePr
r2T h


 �
dX

¼
Z

C1

vh � g dCþ 1

p0RePr

Z
C3

qh � h dCþ
Z

X
qh c� 1

cp0

q� 1

cp0

dp0

dt

� 	
dXþ

Z
C3

RhhdCþ
Z

X
RhqdX

�
Xnelement

e¼1

Z
Xe

d ðuh � rÞvh þ 1

q
rqh � 1

Re
ðr2vhÞ þ 1

3
rðr � vhÞ


 �� �
� 1

Fr
qg dX

�
Xnelement

e¼1

Z
Xe

e r � vh � 1

p0RePr
ðr2RhÞ


 �
� c� 1

cp0

q� 1

cp0

dp0

dt


 �
dX

�
Xnelement

e¼1

Z
Xe

/ ðuh � rÞRh � 1

RePr
ðr2RhÞ


 �
� qdX 8vh 2 V h

v 8qh 2 V h
q 8Rh 2 V h

R; ð37Þ
where r is the stress tensor excluding the pressure ph (the hydrodynamic pressure and the thermodynamic pres-
sure). Note that rvh in (37) is also a tensor of order two. A similar approach was applied to convection–dif-
fusion problem in [5]. In the Eq. (37) there are three stabilization parameters: d; e and /. They are all the local
parameters for each element. Their exact calculations need to solve the local problem (36) on each element. In
practical computations of constant-density flows, however, they are always evaluated approximately. As an
approximation these schemes are used in this work to evaluate the stabilization parameters. Hence in this
work we choose three types of the stabilized parameters for our problems:

First type of the stabilization parameters follows from [25]
d ¼ / ¼ h
2kuhk fðReuÞ;

e ¼ 0:

�
ð38Þ
Second type of the stabilization parameters is proposed by [7]
d ¼ / ¼ h
2kuhk fðReuÞ;

e ¼ kkuhkhfðReuÞ:

(
ð39Þ
Third type of the stabilization parameters is suggested by [6]
d ¼ / ¼ 2
Dt

� �2 þ 2kuhk
h

� �2

þ 9 4m
h2

� �2

 ��1

2

;

e ¼ k h2

d ;

8><>: ð40Þ
where h and uh denote the element length and local velocity, Reu is the local Reynolds number and k is a coef-
ficient, which is taken as 0.5 in this work. The function, fðxÞ, is defined as
fðxÞ ¼
x
3
; 0 6 x 6 3;

1; 3 6 x:

�
ð41Þ



W. Liu, G. Makhviladze / Journal of Computational Physics 227 (2008) 2743–2757 2749
3.2. Spatial discretizations

The spatial discretisation of (37) yields a set of linearised ordinary differential equations:
ðM þM 0Þ dS
dt
þ ½NðS0Þ þ N 0ðS0Þ�S þ ðK þ K 0ÞS ¼ F þ F 0; ð42Þ
where S0 expresses the flow state at some time step and dS
dt denotes the time derivative of unknown vector; M is

the mass matrix and M 0 is the corrected mass matrix to extend the finite element space; NðS0Þ and N 0ðS0Þ de-
note, respectively, convection matrix and its correction that is actually the SUPG (streamline-upwind/Petrov–
Galerkin) term for the momentum Eq. (10) and energy Eq. (11). The matrix N 0ðS0Þ still includes the PSPG
(pressure-stabilizing/Petrov–Galerkin) matrix in the volume Eq. (15). The matrix K consists of, respectively,
the pressure matrix and viscous matrix of the momentum equation, the divergent matrix and heat-conductive
matrix of the volume Eq. (15), and the heat-conductive matrix of the energy equation. Note that the pressure
matrix is actually the transpose of the divergent matrix. Owing to linear interpolation element, K 0 is only the
Laplace matrix in the volume equation. Finally, F and F 0 express the integrations in the right hand side of
(37).

3.3. Time integration algorithm

The second order trapezoidal method is applied to solve (42), therefore the whole time integration proce-
dure reads

Give the time step width Dt and flow state Sn at t ¼ tn
Do Newton non-linear iteration

Do linear system solver
Calculate R ¼ ðM þM 0Þ Sn

2Dt þ 1
2
½NðSnÞ þ N 0ðSnÞ�Sn þ 1

2
ðK þ K 0ÞSn � F n � F 0n

Solve MþM 0

2Dt þ 1
2
½NðSnÞ þ N 0ðSnÞ� þ 1

2
ðK þ K 0Þ

� 
Snþ1 þ R ¼ 0

End Do linear system solver

Newton non-linear update

End Do Newton non-linear iteration

Time update and start next time step

The geometrical multigrid preconditioned Krylov iterative method is used for solving the discrete linear
algebraic systems in each time step [1].

4. Numerical tests

In this section we choose three typical thermal flows of low Mach number, lid-driven cavity with vertically
heated wall, thermal convection induced by fire in a compartment and Rayleigh–Benard flows, to investigate
and to test the proposed numerical scheme. All these are three-dimensional flows. We assume that the initial
conditions are a static state of the air with the temperature 300 K, density 1:2 kg m�3 and atmospheric pres-
sure 1:03� 105 N m�2, if no other claim is given.

As mentioned in Section 3.3 the numerical solution procedure involves two iterations: Newton non-linear
iteration and linear system iteration, see [1]. The linear system solver’s iterations do not exceeded 45 to achieve
convergent tolerance which is set to 10�5 in the following computations. The tolerance for the non-linear iter-
ation is set to 10�3. It is generally achieved by 4 Newton non-linear iterations.

4.1. Lid-driven cavity

The computed cavity consists of a cube with unity sides, which is uniformly meshed by 35� 35� 35 hexa-
hedral elements. On the top face the driven boundary condition is posed, namely, a unity velocity drives the
flow in the cavity. The boundary condition for the temperature of the lid was 300 K. The other faces are
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specified as wall boundary conditions. Two different types of flows were considered: quasi-isothermal flow and
asymmetric vertical thermal convection. The type of flow was determined by the boundary conditions on the
side wall. For the quasi-isothermal flow, all wall are adiabatic, while for the vertical thermal convection, tem-
perature of the side upstream wall is constant and higher than 300 K (the heated wall), and the boundary con-
ditions on the other faces are the same as the quasi-isothermal flow.

When implementing the driven boundary condition, one should carefully handle the four edges of the top
face. They belong to both the side walls and the driving face. If the edges are set into the driving boundary
conditions, the computational stability could be significantly damaged.

4.1.1. Quasi-isothermal flow

Firstly we present the isothermal flow computation. The flow Reynolds number is set to 1000. Our com-
putation produced a reasonable solution for this problem. However we also notice a small difference
between our results and those published for the 2D flows, see Table 1. There are twofold reasons resulted
in the difference. One is that our computation is 3D but the computations in [2,12] are 2D. The other rea-
son is in mesh resolution. The mesh resolution in [2] is almost five times higher than in this work in a 2D
cross-section.

Also from Table 1 we can see that the differences of the computational results for three parameters (38)–
(40) are minor. This observation is further confirmed by Fig. 1 which shows the velocity profiles on the central
lines. It follows from Fig. 1 that for the isothermal flow:


 the stabilised terms with the parameter e in (37) does not provide a significant improvement of stability and

 the stability parameter (38) and (40) are almost identical numerically.
Table 1
Maximum and minimum velocities obtained in this computation and [2,12]

Method ux �min uz �max uz �min

1st parameter �0.3309 0.3047 �0.7472
2nd parameter �0.3231 0.3194 �0.7518
3rd parameter �0.3918 0.3460 �0.7760
Ref. [2] �0.3886 0.3769 �0.5264
Ref. [12] �0.3829 0.3709 �0.5155

Fig. 1. Flow velocity profiles on central plane of isothermal cavity flow produced by three stabilisation parameters, their deviations based
on the first parameter is less than 0.4% (a) normal velocity profile (b) streamwise velocity profile.



Fig. 2. Comparison of velocity vectors of isothermal and vertically heated cavity flows (a) isothermal flow (b) vertically heated flow.

Fig. 4. Flow velocity profiles on central plane at different time step widths (a) normal velocity profile (b) streamwise velocity profile.

Fig. 3. Flow velocity profiles on central plane of vertically heated cavity flow produced by three stabilisation parameters, their deviations
based on the first parameter is less than 1.2% (a) normal velocity profile (b) streamwise velocity profile.

W. Liu, G. Makhviladze / Journal of Computational Physics 227 (2008) 2743–2757 2751



Fig. 5. Velocity vectors at the hot wall with temperature T = 440 K. The colour spectrum show the temperature distribution and the
figures in the colour bar are relative to the circumstance temperature (300 K).

Fig. 6. Flow velocity vectors on the central plane (y = 1.4) at instant 150 s, in which the colour spectrum show the temperature
distribution and the figures in the colour bar are relative to the circumstance temperature (300 K).

Fig. 7. Air density profiles on central line (y = 1.4 and z = 0.8) produced by three stabilisation parameters.
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4.1.2. Vertical thermal convection

For thermal lid-driven flow, vertical hot wall, as a side wall boundary condition, is maintained at constant
temperature T ¼ 350 K. Temperature difference between the wall and the gas causes the development of ther-
mal convection. The other boundary conditions in this flow are the same as for the isothermal.

Fig. 2 displays the velocity vectors of the thermal flow and isothermal flow on the cross-section at y ¼ 0:5.
We may see that the thermal convection leads to the formulation of two vortices; one is upper and one down.
To investigate the performance of the numerical schemes, the streamwise and normal velocity profiles are
obtained for the three parameters (38)–(40), which is presented in Fig. 3. Again the differences of the compu-
tational results by these three parameters (38)–(40) are minor.

It should be pointed out that all the numerical tests in this work have been carried out for CFL number
more than one. The influence of the time steps or CFL numbers on computations is presented in Fig. 4. Note
that (40) is involved in the time step. One can see that the influence of CFL number is minor. It is found that
the proposed numerical schemes allow a very large time step, say Dt ¼ 2 s in this case, which corresponds to
CFL = 75, and produce completely stable computations.

In order to investigate the flow with higher-temperature gradient we reset the hot wall to 440 K. The time
step and CFL number for this computation are Dt ¼ 0:4 s and CFL = 15, respectively. Fig. 5 displays the
Fig. 8. Temperature contours on planes (a) z ¼ 0:2lz, (b) z ¼ 0:5lz and (c) z ¼ 0:8lz. The colour spectrum show the temperature
distribution and the figures in the colour bar are relative to the circumstance temperature (300 K).



Fig. 9. Evolution of Rayleigh–Benard convection on y ¼ 0:2ly . The background colour spectrum show the density distribution and the
vectors present the convection velocities.
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velocity vectors on the central section. Comparing it with Fig. 2(b) we can see that the effect of a higher hot
wall on the flow is mainly concentrated near the hot wall area.

4.2. Convection in fire compartment

The second numerical test is a compartment fire. The dimension of the compartment is
2:8� 2:8� 2:18 m3ðlength� width� heightÞ with an open door on the side wall of the room whose dimension
is 0:74� 1:83 m2 ðlength� heightÞ. The fire is located at the centre of the room floor that is modelled by a heat



Fig. 10. Air density profiles on central line (y = 0.5 and z = 2.5) produced by three stabilisation parameters.
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source with the heat release rate 5 KW. The compartment is meshed by about 100,000 hexahedral elements.
Boundary conditions on the walls, ceiling and floor of the room take into account no-slip velocity and adia-
batic conditions. Free boundary condition is imposed on the opening door. Thus the convection is developed
due to the heat source in the middle of the floor.

Fig. 6 displays the velocity vectors in the air flow for central section at time instant 150 s. The colour1 spec-
trum shows the temperature distribution. One can see that the computation reproduces a low-temperature
inflow of air into the compartment in the bottom area of the door and a higher-temperature outflow of com-
bustion products under the door soffit.

In this case study, the tested maximum time steps Dt ¼ 2 s and maximum CFL number is CFL = 157,
under which the computation is still stable. For this problem, we found the three stabilised parameters have
different effects on the computational results. For example, Fig. 7 presents the air density distributions on the
central line of the compartment produced by the three stabilised parameters. The second and third parameters
give the similar solutions, which are quite different from that by the first parameter. This shows that the sta-
bility term e plays more important role for the fire problem with heat sources inside computational domains.

4.3. Rayleigh–Benard flows

Rayleigh–Benard convection is a classic transitional thermal flow. In this section we take it as a case study
to test the proposed numerical scheme. The computational domain is 3D rectangular enclosure with geometric
aspect ratio: lx : ly : lz ¼ 5 : 5 : 1, which is meshed by 50� 50� 30 elements. The bottom wall (z = 0) is slowly
heated to a higher-temperature 320 K initially and the top wall is kept at 300 K. Thus we have a linear tem-
perature profile from the high temperature on the bottom wall to the low-temperature on the top wall. Then
the bottom wall is suddenly heated to 325 K. On the side walls adiabatic boundary conditions are used.

The flow structures are controlled by the Rayleigh number Ra ¼ gl3
z

DT
T 0

1
jm, where g; lz;DT ; T 0; j and m

denote, respectively, the gravity acceleration, height of the computational domain, temperature difference
between the bottom and top walls, averaged initial temperature, thermal conductivity and kinematic viscosity.
In [23], a similar computation is reported. In order to compare our computations with [23], we choose
Ra ¼ 8� 103. Fig. 8 displays the temperature contours at steady state on the cross-section,
z ¼ 0:2lz; z ¼ 0:8lz and z ¼ 0:5lz. The flow structures produced by this scheme are basically identical with
the results from [23, Figs. 5(d), 6(d) and 7(d)]. However we also noticed some difference of both results, in
particular in Fig. 8(c). The reason is that the basic Eqs. (10)–(15) we solve are some different from [23].
The development of the convection is shown on Fig. 9; the background colour spectrum displays the density
distribution and the arrows denote the convection velocities.
1 For interpretation of colour in Figs. 5, 6, 8 and 9 the reader is referred to the web version of this article.
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In this study, we tested two time steps: a small time step Dt ¼ 0:05 (CFL = 1.8) and a large time step
Dt ¼ 0:5 (CFL = 18). The small time step is for calculation of the detailed development of Rayleigh–Benard
convection (Fig. 9), and the large time step allows the obtaining of the steady state very quickly (Fig. 8).

This numerical test also shows that computational performance of the stabilised parameters is similar to
that for the driven cavity flow. The three stability parameters produce almost identical numerical results.
For example, Fig. 10 shows density profiles on the central line obtained with the three stabilised parameters.

5. Conclusions

In this paper we have derived an effective implicit finite element scheme to solve a set of equations which
govern thermal flow problems at low Mach number. The proposed scheme allows a large time step width. In
order to investigate the performance of the proposed method, three representative case studies have been car-
ried out in this work. The numerical tests show that the numerical scheme can produce the accurate numerical
solutions to unsteady flows when a small enough time step is used. Moreover for large time step the compu-
tation is still robust and stable. This will speed up the computations for steady flows.

There are three stability parameters in the proposed numerical scheme. Theoretically they can be calculated
by solving the local problem (36) on each element. In practice, however, they are always obtained by approx-
imations. In this work we tested three stabilising parameters. It is found that they can produce quite similar
results for the thermal flows induced by hot boundaries. For inner heat sources the computational results
diverge significantly. Therefore the second and third parameters are recommended for the flows with heat
internal sources in computational domains.
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